GAFFI Fact Sheet

Fungal Keratitis

Keratitis refers to inflammation (usually an infection) of the normally transparent cornea of the eye, which causes ulceration and gradual opacification of the cornea, initially due to an influx of inflammatory cells and later, due to fibrosis. Infective (infectious) keratitis may be caused by bacteria, fungi, viruses or protozoa (inflammation without infection may be due to chemical injury) and is the main cause of unilateral corneal scarring. Over 100 different fungi have been described as causes of fungal keratitis and new pathogens are regularly described. However, the common causative agents are Fusarium spp., Aspergillus flavus and A. fumigatus and Candida albicans (less common in tropical climates). In warm, humid climates, approximately 50% of cases of infective keratitis are caused by fungi, but in dry, cool climates, 95% of cases are caused by bacteria.

Corneal abrasion or significant trauma from any type of plant or organic material are the most common predisposing factors. Other risk factors include immunocompromise (including exposure to local or systemic corticosteroids), diabetes, HIV infection, impaired tearing, incomplete eyelid closure and poor hygiene practice in those who use contact lenses. Seasonal variations in incidence have also been described.

Incidence

The annual incidence of infective keratitis varies with geographical location.

- a. In the USA the incidence is 11 cases x 100,000 inhabitants.
- b. In the UK, the incidence is 0.034 cases per 100,000 per year.
- c. In Hong Kong, 6.3 cases x 100,000.
- d. In India, 113 cases x 100,000.
- e. In Bhutan, 339 cases x 100,000.
- f. In Myanmar, 710 cases x 100,000.
- g. In Nepal, 799 cases x 100,000.

It is estimated that 12 million cases of microbial keratitis occur every year in South East Asia but it is unknown what proportion of cases ends up with visual loss or blindness. A statistically significant correlation has been found between Gross National Income (GNI) and aetiology of microbial keratitis. Fungal keratitis is associated with low GNI countries. In 2002, a government report from India estimated that keratitis accounted for 9% of cases of blindness in India. In Ugandan children with visual impairment, visual loss after corneal ulceration was responsible for nearly 25% of cases.

The annual incidence of microbial keratitis in contact lens wearers varies: 1.2-1.304 /10,000, depending on the type of lens, overnight use and the quality of lens care. The proportion of microbial keratitis cases caused by fungi in contact lens wearers varies from 0.33% to 50%. An international outbreak of Fusarium...
keratitis in contact lens users occurred in 2004-2006, related to loss of disinfecting capability of the ReNu contact lens solution, now withdrawn\textsuperscript{18}.

Young adults are predominantly at risk, with men more often affected than women. In one series nearly 4\% of cases were found in children\textsuperscript{19}.

The rate of HIV infection in those presenting with fungal keratitis in Tanzania was twice the documented rate in the adult population\textsuperscript{7}, confirmed by other workers\textsuperscript{18}.

**Clinical presentation**

The eye exhibits signs of inflammation: injection (redness of the conjunctiva), an anterior chamber reaction and, possibly a hypopyon (pus in the anterior chamber)\textsuperscript{2,3}. Both bacterial and fungal ulcers may present with a large area of central necrosis and a significant hypopyon. Serrated (as opposed to well demarcated) margins, raised slough and colouration other than yellow are statistically more often associated with a fungal cause, whereas immune ring, keratic precipitates, perineural infiltrates, endothelial plaque, and flare or cells in the anterior chamber are not\textsuperscript{20}. If one of the three distinctive clinical features is present the probability of fungal keratitis is 63\%, increasing to 83\% if all three features are present\textsuperscript{20}.

**Diagnosis**

Diagnosis of fungal keratitis is slow and complicated. Confirmation of the diagnosis is made from corneal scrapings or biopsy, by microscopy and culture\textsuperscript{3}. The procedure requires that the eye be anaesthetised with local anaesthetic eye drops. A metal blade is then used to collect material aseptically from the base and margin of the ulcer under direct vision through the magnification of a slit-lamp. The material is then transferred to a clean glass microscope slide, flooded with potassium hydroxide and examined for fungal elements by light microscopy. This method is 60-90\% sensitive for hyphae depending on the adequacy of the sample and the interpretive skill of the microscopist. Gram staining is less sensitive, except for identification of \textit{Candida} spp. Other staining methods include Giemsa, lactophenol cotton blue, methanamine silver and calcofluor white; all have strengths and weaknesses\textsuperscript{3}. Biopsy samples may have a slightly higher diagnostic yield.
Samples should be cultured on bacterial and fungal media. Fungal growth is typically slow, taking 48 hours to 10 days to become visible. Due to the diversity of fungi cultured from cases of fungal keratitis, examination of cultures by a specialist mycologist is typically necessary to identify the cultures. *Fusarium* species are the most common, followed by *Aspergillus* spp. and *Candida* spp. Together with *Penicillium* spp., *Alternaria* spp., *Paecilomyces* spp., *Curvularia* spp. and *Bipolaris* spp. these three pathogenic species account for about 90% of cases, with rare fungi (sometimes unidentified) comprising the remainder. Many cultures are negative for bacteria and fungi, sometimes because of prior antimicrobial therapy.

Point of care testing of this disease would dramatically improve patient outcomes.

**Treatment**

Responses to topical antifungal therapy are reasonable, with 75% of corneas not severely affected and 60% of those severely affected being cured by topical 5% natamycin (Pimaricin). Other therapies produce similar response rates, although natamycin is superior to voriconazole. Advanced disease on presentation is associated with worse outcomes.

Natamycin 5% eye drops are registered and available in some countries. The following alternative antifungal eye drops have been used with variable success rates: amphotericin 0.15-0.3%, flucytosine 1%, econazole 1%, miconazole 1%, clotrimazole 1%, itraconazole 1%, fluconazole 1% and voriconazole 1-2%, caspofungin 0.5%. Oral itraconazole and voriconazole may be useful in some patients. It is not clear whether intrastromal or subconjunctival antifungal injections contribute to success of treatment of fungal keratitis. Only amphotericin B (IV) and flucytosine (oral) are included in the WHO list of essential medicines. Global availability of natamycin 5% at affordable cost is needed.

Surgery is sometimes required in patients who fail to respond to medical therapy or where there is a threat of ocular perforation or the formation of a descemetocoele. Surgery should be preceded by medical therapy for as long as possible. Surgical procedures include debridement or lamellar keratectomy, formation of a conjunctival flap over a severely ulcerated area of the cornea (in an attempt to save the eyeball), or penetrating keratoplasty if a donor cornea is available. In patients with malignant glaucoma, to restore drainage of aqueous humour, iridectomy, lens excision or anterior vitrectomy may be necessary. In intractable cases, with perforation of the eye, removal of the eyeball (evisceration) is required.
Outcome
A recent report from Tanzania revealed the poor outcome of microbial keratitis in that geographical area. The study comprised 170 patients. At discharge, 66% were blind in the affected eye, 30% had developed corneal perforation and 8% underwent evisceration, despite antifungal therapy. Late presentation and diagnosis are the principal problems and are a particular feature in resource poor countries with large, (remote), rural, agricultural communities.

Detection of ulceration and prevention
Village health workers can be taught how to diagnose corneal abrasions with strips of fluorescein dye and a blue torch and to start prophylactic antimicrobial therapy if an abrasion is detected. Publicity campaigns about the efficacy of prophylactic measures, combined with local health worker training in at risk communities, is effective in reducing the frequency of keratitis.

Opportunities to reduce Global Disease Burden and improve patient outcomes:
A number of feasible initiatives, if widely implemented, could have a very substantial impact on reducing the global fungal keratitis disease burden:

1. Encourage the performance of epidemiological studies including estimation of DALYs to understand the real burden of fungal keratitis,

2. Develop a point care antigen test as a tool for rapid, primary diagnosis,

3. Provide training in classical diagnostic procedures including sampling, culture techniques and fungal species identification,

4. Optimize use of antifungal therapy in resource limited settings through promoting a global approach to the prevention, diagnosis and management of microbial keratitis
   a. Develop a point of care test that differentiates bacterial infection from fungal infection,
   b. Investigate the value of introducing combination treatment with antibiotic and antifungal eye drops versus early diagnosis of the cause and targeted therapy,

b. Ensure that antifungal treatments, especially natamycin eye drops, are readily accessible, especially in rural settings,

c. Develop prophylactic or pre-emptive treatment guidelines for ocular injuries,

d. Deliver training in appropriate delivery of the eye drops, dosing and timing,
e. Encourage the performance of clinical trials to determine the best treatment for fungal keratitis.

f. Provide training in classical diagnostic procedures including sampling, culture techniques and fungal species identification.

5. Engage local communities in education and awareness of the benefit of prophylactic measures after eye injury, and provide local healthcare workers with training in detecting corneal abrasion and prophylactic topical antimicrobial medication.

Juan Luis Rodriguez Tudela
Tania Sorrell
GAFFI, Geneva,
Marie Bashir Institute for Infectious Diseases and Biosecurity,
University of Sydney, Australia

References


